

Recent Progress on the Constellation-X Spectroscopy

X-ray Telescope (SXT)

Rob Petre (NASA / GSFC) - SXT IPT Lead for the SXT team

Outline of talk

- Introduction
 - Constellation-X and the SXT
 - SXT requirements and design
- Technology Development Plan Overview
- Recent Progress
 - Reflectors
 - Mandrels
 - Structure
 - Metrology
 - Testing
- Near term plans

Related Papers in this Meeting

- Forming mandrels for x-ray telescopes made of modified Zerodur, T. Doehring et al. [5168-17]
- Fabrication of segmented Wolter type-1 mandrels for the Constellation-X mirror development program, W. J. Egle et al. [5168-18]
- Development of mirror segments for the Constellation-X mission, W. W. Zhang [5168-19]
- Optical metrology for the segmented optics on the Constellation-X soft x-ray telescope, D. A. Content et al. [5168-23]
- Noncontact metrology on segmented x-ray optics for the Constellation-X
 SXT, T. Hadjimichael et al. [5168-24]
- Constellation-X SXT optical alignment Pathfinder 2: design, implementation, and alignment, S. M. Owens et al. [5168-27]
- X-ray testing Constellation-X optics at MSFC's 100-m facility, S. L. O'Dell et al. [5168-34]
- Constellation-X spectroscopy x-ray telescope image error budget and performance prediction, W. A. Podgorski et al. [5168-35]
- Equal-curvature x-ray telescope designs for Constellation-X mission, T. T. Saha et al. [5168-37]

Constellation-X Mission Overview

An X-ray VLT

Use X-ray spectroscopy to observe

- Black holes: strong gravity & evolution
- Dark Matter throughout the Universe
- Production and recycling of the elements

Mission parameters

- Telescope area: 3 m² at 1 keV
 25-100 times XMM/Chandra for high resolution spectroscopy
- Spectral resolving power: 300-3,000
 3-5 times better than Astro-E2 at 6 keV
- Band pass: 0.25 to 60 keV
 100 times RXTE sensitivity at 40 keV

Enable high resolution spectroscopy of faint X-ray source populations

SXT FMA Requirements

SXT FMA Performance Requirements		Trace to Top-Level Mission Requirements			
Bandpass	0.25 to 10 keV	Allocation of mission bandpass to SXT			
Effective area (per mirror) @0.25 keV @1.25 keV @6 keV	8,826 cm ² 8,421 cm ² 1,722 cm ²	Provides 33,000 cm ² at 1 keV and 6,900 cm2 at 6 keV for the mission. Allows effective area losses due to detector efficiency, etc., to achieve TLRD baseline requirement per error budget summarized in Table 1-2.			
Angular resolution	12.5 arcsec HPD	Error budget allocation to mirror that allows telescope system to achieve requirement of 15 arcsec with 4 arcsec margin combined by RSS (Table 1-3).			
Field of view	2.5 arcmin	Exceeds instrument FOV; defined by detector FOV			
Derived Requirements: SXT Mirror		Derivation			
Diameter	1.6 m	To meet mission area requirements with 4 mirrors			
Focal length	10 m.	Consistent with grazing angle requirements for 1.6 m diameter mirror.			
Axial length	<70 cm	To fit within envelope and meet fabrication considerations			
Operating temperature	20±1° C nominal	Range is per allocation from SXT angular resolution error budget (Table 1-3); minimizes angular distortions imposed by temperature change to components. Operating temperature is determined by optics assembly temperature			
Mass	642 kg	Current engineering estimate			
Derived Requirements: Th	ermal Pre/Post collimators				
Temperature gradient	1 ° C across diameter 1 ° C axial	Allocation from SXT angular resolution error budget (Table 1-3); minimizes angular distortions imposed by temperature gradients			
Mass	47 kg	Current engineering estimate			

August 6, 2003 SPIE 5168-21–5

SXT Incorporates Modular Approach and Segmented Reflectors

1.6 m diameter at P-H intersection

SXT Mirror Baseline Design Parameters

Parameter	Description				
Design	Segmented Wolter I				
Reflector substrate material	Thermally formed glass				
Reflecting surface fabrication	Epoxy replication				
X-ray reflecting surface	Gold				
Number of nested shells	140 (inner); 90 (outer)				
Total number of reflectors	3840				
Reflector length	20 cm				
Number of modules	6 (inner); 12 (outer)				
Module housing composition	Titanium alloy, CTE-matched to substrate				
Largest reflector surface area	0.16 m ²				
Substrate density	2.4 gm/cm ³				
Reflector thickness	0.4 mm				
Reflector microroughness	0.4 nm RMS				
FMA mechanical envelope	1.7 m dia x 1.65 m				

August 6, 2003 SPIE 5168-21-7

SXT Effective Area

Schematic of SXT Flight Mirror Assembly (FMA)

SXT Mirror Phased Technology Development

OAP 1

Inner Module (P&H)
Objective: Evaluate mirror
assy design, alignment and
metrology

OAP 2

Inner Module (P&H)
Objective: Evaluate
reflector, mirror bonding

EU

Inner Module (P&H)
Objective: Evaluate assembly
gravity sag, composite housing,
X-ray and environmental test

Mass Alignment Pathfinder

Inner Module (P&H)
Objective: Evaluate tooling
and alignment techniques for
mass production, X-ray test

Prototype Outer Modules

Outer modules (P&H)
Largest reflectors
Objective: Evaluate flight-like
configuration outer module,
X-ray and environmental test

Prototype Inner module

Inner module (P&H)
Objective: Evaluate flight-like configuration inner module

Prototype Wedge

Two outer modules + one Inner module (P&H) Objective: Evaluate flight-like wedge, X-ray and environmental test

Flight Mirror Assembly (FMA)

Segmented X-ray Mirror Development Approach

Optical Pathfine		der Assembly	F	Mass Alignment	Part to the	
	OAP #1	OAP #2	Engineering Unit	Pathfinder	Prototype	
Configuration	PH	P	PH	PH	P	
Module Type	Inner	Inner	Inner	Inner	Outer	Wedge (2 Outer & 1 Inner)
Housing Material	Aluminum	Titanium	Titanium/composite	Titanium/composite	Titanium/composite	Titanium/composite
Focal Length	8.4 m	8.4 m	8.4 m	8.4 m	10.0 m	10.0 m
Reflector Length (P&H)	2 x 20 cm	2 x 20 cm	2 x 20 cm	2 x 20 cm	2 x 20-30 cm	2 x 20-30 cm
Nominal Reflector Diameter(s)	50 cm	50 cm	50 cm±	50 cm±	160 cm 120 cm± 100 cm	160 cm± 120 cm± 100 cm± 40 cm±
Goals	Align 1 reflector pair (P&H) Evaluate mirror assembly design, alignment and metrology	Align 1 reflector pair Evaluate reflector Evaluate mirror bonding	Requirements: Align one reflector pair to achieve <12.5 arcsec X-ray test Goals: Align up to 3 reflector pairs to achieve <12.5 arcsec Characterize assembly gravity sag Environmental test Evaluate housing design	 Align 3 reflector pairs Evaluate tooling and alignment techniques for mass production X-ray test 	Flight-like configuration outer module Environmental and X-ray test Largest reflectors	Demonstrate largest and smallest diameter reflectors Demonstrate module to module alignment Environmental and X-ray test
TRL	TRL 3		TRL 4		TRL 5	TRL 6
Timeframe	Q2 of FY03	Q3 of FY03	Q4 of FY04	Q2 of FY05	Q2 of FY06	Q4 of FY06
Technology Gate					•	

August 6, 2003

SXT - Recent Progress

- Constellation-X approved as part of NASA "Beyond Einstein" initiative
 - Working toward 2013 and 2014 launches
- Development has centered on 50 cm engineering testbeds with 8.4 m focal length
 - Utilizes available metal mandrels and preparation facilities (coating & cleaning)
- Substantial progress toward making 50 cm reflector segments that meet requirements
 - Reflector fabrication has emerged as critical path to meeting angular resolution requirement; 20
 cm diameter segments consistently meet requirement
 - Performed replication facility rework to remove contamination (mainly dust)
 - Modified epoxy application approach applied as axial strips
 - Reflector quality is now limited by forming mandrel quality
- Took delivery of 1.2 m replication mandrel from Zeiss; acceptance metrology of 1.6 m mandrel nearing completion
- OAP1 work completed demonstrated ability to reproducibly manipulate and align reflectors (S. Owens talk)
- OAP2 work underway learning how to bond reflectors; environmental test is pending
- Engineering unit housing being designed
- Mass alignment pathfinder concept being developed
- Preparations nearly complete at MSFC stray light facility for X-ray characterization
- Major project milestone is performance demonstration; goal is end of year

SXT Angular Resolution Error Budget

Contributors (HPD - arcsec)	Rqmt 15.00	Margin 3.92	Allocations				Rationale	
RGS Resolution			14.48					4 satellities, post-processed
Co-add 4 satelites	8	8	8	1.00	(4)			Superposition of data using X-ray centroids
 On-Orbit Telescope - single satelite 				14.12	1			RSS
 OCD pixelization error 		Å.	S.	0.41	8 9			0.5 arcsec pixels
 Grating resolution error 				3.00				Estimale
XMS Resolution	15.00	4.95	14.16					4 satellites, post-processed
Co-add 4 satellites				1.00				Superposition of data using X-ray centroids
On-Orbit Telescope - single satellile		.G	150	14.12				RSS
 Calorimeter pixelization error 	8	8	8	9 9	4.08	8 1	8	5 arcsec pixels
 Telescope level effects 					5.20			RSS
 Image reconstruction errors (over obs) 	2		9	8 3		4.24	8	RSS
 SXT/Telescope mounting strain 						2.00		Eng. estimate based on Chandra experience
- SXT/SI vibration effects	i i	33	S.	8)	S)	2.00		Chandra experience (litter)
 SXT/SI misalignment (off-axis error) 				.,		1.00		Chandra experience
- SXT/SI focus error		Ĉ.	8	§)		0.20		Analysis
 SXT FMA - on-orbit performance 	- 8	8	8	9 0	12.48	. 8		RSS
- SXT FMA launch shifts						2.00		Eng. est. based on Chandra
- Thermalerrors	i i	Š	Š.	8 8		2.24		RSS
- Material stability effects						1.00		Est based on Chandra work
- SXT FMA, as built	Š	ÿ	ÿ.	0 0		12.07		RSS
Gravity release							1.50	FEA analysis using vertical assy
Bonding strain					-		3.00	Eng. estimate, analysis in process
Alignment errors (using CDA)		S.	Š.	9 9			3.38	RSS
Installation in housing			*				5.00	Est, based on OAP1 testing
Optical elements	- 6	5	Š.	9 9			9.90	Est, based on tech dev program

- Achievement of 15 arc second system resolution requires <12.5 arc second SXT resolution
- Largest SXT error budget component is the reflector figure

Reflector Fabrication

- The reflector figure represents the largest term in the SXT angular resolution error budget
- The success of the SXT (and thus Con-X) depends on reflector development
- This is the SXT team priority
- 50 cm development has led to numerous advances:
 - Development of stringent facility cleanliness requirements (removal of dust and other contaminants)
 - Epoxy segmentation during replication has resulted in significant stress reduction, leading to good reflector figure
 - Change in overall approach to reflector development: figure must be imparted by forming mandrel; replication removes only mid-frequency terms; epoxy thickness should be minimized (with goal of zero)

Reflector Replication

Robotic spraying of substrate

Removal of finished reflector after curing

Attachment of substrate to mandrel in vacuum

Finished reflector

A Typical Substrate and Replica

- Red: substrate;
- Black: replica;
- Green: forming mandrel;
- Blue: Zeiss replication mandrel;

- Yellow: substrate requirement;
- •Brown: Corresponding to a 12" HPD (Con-X Requirement)
- •Purple: Corresponding to a 5" HPD (Con-X Goal)

Precision forming and replication mandrels

- Forming and replication mandrel production details discussed in earlier talks by T. Doehring and W. Egle
- Con-X has taken delivery from Zeiss of two precision (~4")
 Zerodur replication mandrels for 30-degree arcs of 1.6 m and 1.2 m diameter mirrors; 1.0 mandrel due in ~ one month
- Schott is producing a precision Keatite forming mandrel for the 1.6 m secondary
- Figure of forming mandrels must be made more precise than previously thought as described by W. Zhang
- New 50 cm forming mandrels must be produced if OAP2 and EU are to meet resolution requirement.

OAP1 Housing and Alignment

- Alignment scheme incorporates five independent positioners, top and bottom, plus two vertical positioners
- Interferometer viewing through window in hub provides feedback on figure distortions
- Centroid Detector Assembly (designed for Chandra mirrors) is used to determine focal point and reflector distortions

In-situ axial figure station

Summary of lessons learned with OAP-1

- Satisfactory alignment quality can be achieved with CDA and in-situ axial interferometry
- Small differential adjustments of actuator pairs changes local average slope, but not local axial figure
- Common mode adjustments change 2nd order axial figure, but not local slope
 - Axial sag changes at ~0.2 microns per micron of common mode adjustment.
 - An adjustment at one position will effect the sag at least as far as the neighboring sets of actuators
- Common mode adjustments of all OAP actuators simultaneously yield little change in axial figure

Optical Alignment Pathfinder 2

- Designed to work in tandem with the OAP1 unit
 - OAP2 is a monolithic titanium housing, EDM cut from a single parent block
 - Nests inside the OAP1 structure.
 Uses the precision alignment arms of OAP1
- Once alignment with OAP1 arms is done, and mirrors bonded, OAP2 units stack up, and are bonded together.
- Entire unit can then be turned horizontal for x-ray testing.
- Structure is very thick, minimizing gravity distortions to mirrors

Mirror alignment in OAP2

- Bottom radial support arms are located using CMM and bonded on OAP2
- Mirror is place in housing and top radial support arms are located and bonded.
- OAP2 is inserted in OAP1, ruby ball fingers capture mirror, and are located using CMM
- OAP1/OAP2 unit is mounted in CDA tower, and actuators are fine adjusted to focus each return beam to a coincident point
- Initial mirror alignment yields good quality, but not quite flight requirement
 - 5.89" RSS of points from centroid vs3.38" requirement
- Difficulties with secondary mirror figure has limited us so far from getting good alignment with a mirror pair.

Tooling for Mass Alignment Pathfinder

Mass Production Tooling:

- Intent to combine precision actuator output with CDA output in computer controlled loop
- Investigating this summer using a single manipulator arm
- In parallel, refining requirements on etched Si microstructures
- Automated alignment concepts will be incorporated into Engineering Unit

General arrangement of robotic arm

Automated alignment signal flow diagram

Preparation for X-ray Performance Testing

- X-ray performance testing will be performed at MSFC 100-m Stray Light Facility
- Special, massive 6-degree of freedom optical table has been developed especially for SXT tests
- Performance test "dry run" will commence within ~ one month
- First performance test contingent upon production of reflectors that meet figure requirement

Plans for Coming Year

- Continue improving 50 cm reflector substrate figure key to success
 - Refinement of forming more uniform temperature
 - Obtain forming mandrels with 2-4 arc second figure
 - Reduce epoxy thickness
- X-ray test of reflector pair (in OAP2 housing)
- Construct Engineering Unit
- Develop automated alignment scheme
- Incorporate CDA measurements into computer-controlled feedback loop for reflector alignment
- Establish facility for producing 1.6 m reflectors
 - Replication and coating chambers have been ordered
- Initiate industry studies of Flight Mirror Assembly (RFI released)
 - Anticipate two parallel design studies
 - Prelude to selecting FMA contractor in 2005

The SXT/FMA Technology Development Team

- Integrated team, with participants from several institutions
- Key activities and leads:
 - Technology development management (D. Nguyen, GSFC)
 - System engineering and mechanical modeling (B. Podgorsky, SAO*)
 - Optical design and modeling (T. Saha, GSFC*)
 - Reflector development (W. Zhang, GSFC*)
 - Alignment (S. Owens, GSFC*)
 - Metrology (D. Content, GSFC*)
 - Thermal design and modeling (M. Freeman, SAO)
 - Housings (J. Stewart, GSFC)
 - X-ray calibration (S. O'Dell, MSFC*)

^{*}in attendance

Mass Alignment Hardware Block Diagram

